Spatiotemporal Analysis of Near-Miss Violent Tornadoes in the United States

Author:

Hatzis Joshua J.1,Koch Jennifer1,Brooks Harold E.2

Affiliation:

1. Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma

2. NOAA/National Severe Storms Laboratory and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract In the hazards literature, a near-miss is defined as an event that had a nontrivial probability of causing loss of life or property but did not due to chance. Frequent near-misses can desensitize the public to tornado risk and reduce responses to warnings. Violent tornadoes rarely hit densely populated areas, but when they do they can cause substantial loss of life. It is unknown how frequently violent tornadoes narrowly miss a populated area. To address this question, this study looks at the spatial distribution of possible exposures of people to violent tornadoes in the United States. We collected and replicated tornado footprints for all reported U.S. violent tornadoes between 1995 and 2016, across a uniform circular grid, with a radius of 40 km and a resolution of 0.5 km, surrounding the centroid of the original footprint. We then estimated the number of people exposed to each tornado footprint using proportional allocation. We found that violent tornadoes tended to touch down in less populated areas with only 33.1% potentially impacting 5000 persons or more. Hits and near-misses were most common in the Southern Plains and Southeast United States with the highest risk in central Oklahoma and northern Alabama. Knowledge about the location of frequent near-misses can help emergency managers and risk communicators target communities that might be more vulnerable, due to an underestimation of tornado risk, for educational campaigns. By increasing educational efforts in these high-risk areas, it might be possible to improve local knowledge and reduce casualties when violent tornadoes do hit.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3