A Spatiotemporal Perspective on the 31 May 2013 Tornado Evacuation in the Oklahoma City Metropolitan Area

Author:

Hatzis Joshua J.1ORCID,Klockow-McClain Kim E.12

Affiliation:

1. a Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

2. b NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract On 31 May 2013, an extremely large and violent tornado hit near the town of El Reno, Oklahoma, a small town in the Oklahoma City metropolitan area. The size and intensity of this tornado, coupled with the fact that it was heading toward Oklahoma City, prompted local broadcasters to warn residents to evacuate their homes and head south if they could not shelter belowground. This warning led to a large-scale evacuation of the metropolitan area and massive traffic jams on the interstates and major highways that could have caused casualties in the hundreds if the tornado had not dissipated before reaching Oklahoma City. The focus of this study was to understand the magnitude of the 31 May 2013 evacuation through the evaluation of traffic volume data and to determine how frequently such evacuations occur in Oklahoma City and other metropolitan areas. We found that of the six metropolitan areas tested, only Oklahoma City had mass anomalous traffic reversal (ATR) days (days with a mass evacuation signal) with 31 May 2013 having the largest mass ATR day by far. Despite the rarity of mass ATR days, the potential consequences of a large, violent tornado hitting gridlocked traffic is significant, and we recommend that communicators encourage more local sheltering options. Significance Statement On the evening of 31 May 2013, a large-scale evacuation of the Oklahoma City metropolitan area occurred as a result of a very large and dangerous tornado that had formed near the town of El Reno and was moving east toward Oklahoma City. If the tornado had not dissipated before it reached the city it could have caused hundreds of casualties as it passed over gridlocked roads. We sought to understand the frequency of such mass evacuations and found that no other event in six metropolitan areas studied during 2011–18 could compare. While such evacuations fortunately appear rare, more work should be done to understand why they happen when they do and to connect individuals with better local sheltering options.

Funder

national oceanic and atmospheric administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

Reference50 articles.

1. Admin, 2013: Nine killed in tornadoes near Oklahoma City. Gazette, accessed 30 March 2022, https://www.thegazette.com/article/nine-killed-in-tornadoes-near-oklahoma-city/.

2. Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005;Ashley, W. S.,2007

3. Vulnerability due to nocturnal tornadoes;Ashley, W. S.,2008

4. An integrated damage, visual, and radar analysis of the 2013 Moore, Oklahoma, EF5 tornado;Atkins, N. T.,2014

5. Simulation of wildfire evacuation with dynamic factors and model composition;Beloglazov, A.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3