Affiliation:
1. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
2. Institut für Meereskunde, KlimaCampus, Universität Hamburg, Hamburg, Germany
Abstract
Abstract
An energetically consistent model for the diapycnal diffusivity induced by breaking of internal gravity waves is proposed and tested in local and global settings. The model [Internal Wave Dissipation, Energy and Mixing (IDEMIX)] is based on the spectral radiation balance of the wave field, reduced by integration over the wavenumber space, which yields a set of balances for energy density variables in physical space. A further simplification results in a single partial differential equation for the total energy density of the wave field. The flux of energy to high vertical wavenumbers is parameterized by a functional derived from the wave–wave scattering integral of resonant wave triad interactions, which also forms the basis for estimates of dissipation rates and related diffusivities of ADCP and hydrography fine-structure data. In the current version of IDEMIX, the wave energy is forced by wind-driven near-inertial motions and baroclinic tides, radiating waves from the respective boundary layers at the surface and the bottom into the ocean interior. The model predicts plausible magnitudes and three-dimensional structures of internal wave energy, dissipation rates, and diapycnal diffusivities in rough agreement to observational estimates. IDEMIX is ready for use as a mixing module in ocean circulation models and can be extended with more spectral components.
Publisher
American Meteorological Society
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献