Parameterized Internal Wave Mixing in Three Ocean General Circulation Models

Author:

Brüggemann Nils1ORCID,Losch Martin2ORCID,Scholz Patrick2,Pollmann Friederike3ORCID,Danilov Sergey2ORCID,Gutjahr Oliver1ORCID,Jungclaus Johann1ORCID,Koldunov Nikolay2ORCID,Korn Peter1ORCID,Olbers Dirk24,Eden Carsten3ORCID

Affiliation:

1. Max Planck Institute for Meteorology Hamburg Germany

2. Alfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany

3. Institut für Meereskunde Universität Hamburg Hamburg Germany

4. Universität Bremen Bremen Germany

Abstract

AbstractThe non‐local model of mixing based on internal wave breaking, IDEMIX, is implemented as an enhancement of a turbulent kinetic energy closure model in three non‐eddy resolving general circulation ocean models that differ in the discretization and choice of computational grids. In IDEMIX internal wave energy is generated by an energy flux resulting from near‐inertial waves induced by wind forcing at the surface, and at the bottom, by an energy flux that parameterizes the transfer of energy between baroclinic and barotropic tides. In all model simulations with IDEMIX, the mixing work is increased compared to the reference solutions without IDEMIX, reaching values in better agreement with finestructure observations. Furthermore, the horizontal structure of the mixing work is more realistic as a consequence of the heterogeneous forcing functions. All models with IDEMIX simulate deeper thermocline depths related to stronger shallow overturning cells in the Indo‐Pacific. In the North Atlantic, deeper mixed layers in simulations with IDEMIX are associated with an increased Atlantic overturning circulation and an increase of northward heat transports toward more realistic values. The response of the deep Indo‐Pacific overturning circulation and the weak bottom cell of the Atlantic to the inclusion of IDEMIX is incoherent between the models, suggesting that additional unidentified processes and numerical mixing may confound the analysis. Applying different tidal forcing functions leads to simulation differences that are small compared to differences between the different models or between simulations with IDEMIX and without IDEMIX.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3