Evolution of Internal Gravity Waves in a Mesoscale Eddy Simulated Using a Novel Model

Author:

Sebastia Saez Pablo1,Eden Carsten1,Chouksey Manita123

Affiliation:

1. a Institut für Meereskunde, Universität Hamburg, Hamburg, Germany

2. b Institut für Umweltphysik, Universität Bremen and MARUM, Bremen, Germany

3. c Leibniz-Institut für Ostseeforschung Warnemünde, Rostock, Germany

Abstract

Abstract We investigate the effect of wave–eddy interaction and dissipation of internal gravity waves propagating in a coherent mesoscale eddy simulated using a novel numerical model called the Internal Wave Energy Model based on the six-dimensional radiative transfer equation. We use an idealized mean flow structure and stratification, motivated by observations of a coherent eddy in the Canary Current System. In a spindown simulation using the Garret–Munk model spectrum as initial conditions, we find that wave energy decreases at the eddy rim. Lateral shear leads to wave energy gain due to a developing horizontal anisotropy outside the eddy and at the rim, while vertical shear leads to wave energy loss which is enhanced at the eddy rim. Wave energy loss by wave dissipation due to vertical shear dominates over horizontal shear. Our results show similar behavior of the internal gravity wave in a cyclonic as well as an anticyclonic eddy. Wave dissipation by vertical wave refraction occurs predominantly at the eddy rim near the surface, where related vertical diffusivities range from to . Significance Statement Using a novel model and observations from the Canary Current System of a coherent eddy of 100-km diameter, we explore the interaction between a realistic internal gravity wave field and this eddy. We study wave refraction and energy transfers between the waves and the eddy induced by the eddy’s lateral and vertical shear. Waves lose energy at the eddy rim by vertical shear and gain outside of the eddy rim by horizontal shear. We find large vertical wave refraction by vertical shear at the eddy rim, where waves break and mix density, which can have wide ranging effects on the ocean’s circulation. These results are important for understanding the ocean’s mixing and energy cycle and to develop eddy and wave parameterizations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Meteorological Society

Reference36 articles.

1. Iron regulation of North Atlantic eddy phytoplankton productivity;Browning, T. J.,2021

2. Wave capture and wave–vortex duality;Bühler, O.,2005

3. Internal wave observations from a midwater float, 2;Cairns, J. L.,1976

4. Sea surface structure of North Brazil Current rings derived from shipboard and moored acoustic Doppler current profiler observations;Castelão, G. P.,2011

5. Internal gravity wave emission in different dynamical regimes;Chouksey, M.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linking Ocean Mixing and Overturning Circulation;Bulletin of the American Meteorological Society;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3