The Recent Increase in the Occurrence of a Boreal Summer Teleconnection and Its Relationship with Temperature Extremes

Author:

Lee Min-Hee1,Lee Sukyoung2,Song Hyo-Jong3,Ho Chang-Hoi4

Affiliation:

1. Korea Polar Research Institute, Incheon, and School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

2. School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea, and Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

3. Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea

4. School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Abstract

Abstract This study has investigated the relationship between temperature extremes and a subseasonal hemispheric teleconnection pattern over the Northern Hemisphere during boreal summer. By applying self-organizing map (SOM) analysis to 200-hPa geopotential fields from the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) for the period 1979–2012, a teleconnection pattern is identified that increased dramatically in its occurrence after the late 1990s. This pattern is characterized by a zonal wavenumber-5 pattern with anomalous high pressure cores over eastern Europe, northeastern Asia, the eastern North Pacific, the eastern United States, and Greenland. These high pressure centers coincide with regions of increasingly frequent temperature extremes in recent decades. To investigate the temporal evolution of the identified SOM pattern, time-lagged composites were performed relative to the days in which the 200-hPa geopotential field most closely resembled the SOM pattern. From day −10 to day 0, a wave train propagated from the central tropical Pacific to the Canadian Arctic Archipelago and Greenland. This poleward wave propagation was followed by the establishment of quasi-stationary high pressure centers over Greenland, Europe, and Asia. This study suggests that more frequent occurrence of the hemispheric teleconnection is linked to more severe and longer extreme weather events over the Northern Hemisphere since the late 1990s.

Funder

Korea Polar Research Institute

National Research Foundation of Korea

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3