Application of the Self-Organizing Map Method in February Temperature and Precipitation Pattern over China: Comparison between 2021 and 2022

Author:

Zhang Zengping12,Gu Yu3,Wang Zhikuan2,Luo Siyuan4,Sun Siyuan2,Wang Shuting2,Feng Guolin25

Affiliation:

1. College of Mathematics Science and Technology, Yangzhou University, Yangzhou 225002, China

2. College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China

3. Jiangsu Yangzhou Meteorological Bureau, Yangzhou 225009, China

4. Beijing Meteorological Bureau, Beijing 102600, China

5. China Meteorological Administration, Beijing 100081, China

Abstract

In this study, we compared two anomalous wet February periods in 2021 and 2022 in China. The same anomalies appeared in the spatial distribution of precipitation, with anomalous precipitation centered over the southeast coast. However, temperature discrepancies appeared in most of China, with anomalously high temperatures in 2021 and lower temperatures in 2022. Both instances of increased precipitation were attributed to warm and moist advection from the south, with transport in 2021 being partly enhanced by the South China Sea cyclone, whereas transport in 2022 was mainly due to the subtropical western North Pacific anticyclone. Therefore, in this study, we aimed to compare and analyze temperature and precipitation anomalies in February 2021 and 2022 using the self-organizing map method. Warm events in East Asia and cold events in Siberia and the Tibetan Plateau types were obtained by mode 1, which contained 2021. Mode 6 exhibited opposite warm types in Siberia and cold types in southern Asia, including February temperature and precipitation anomalies in 2022. Based on the results of this study, we can conclude that precipitation anomalies in February 2021 and 2022 occurred under different temperature and circulation anomalies, and both were influenced by La Niña events. Autumn sea ice loss in the Barents Sea contributed significantly to warm and rainy events in February 2021. However, the cold and rainy events of February 2022 were closely related to the strengthening of the Siberian High.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tibet Autonomous Region

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3