Strengthening gradients in the tropical west Pacific connect to European summer temperatures on sub-seasonal timescales

Author:

van Straaten ChiemORCID,Coumou Dim,Whan Kirien,van den Hurk BartORCID,Schmeits Maurice

Abstract

Abstract. Recent work has shown that (sub-)seasonal variability in tropical Pacific convection, closely linked to the El Niño–Southern Oscillation (ENSO), relates to summertime circulation over the Euro-Atlantic. The teleconnection is non-stationary, probably due to long-term changes in both the tropical Pacific and extra-tropical Atlantic. It also appears imperfectly captured by numerical models. A dipole in west Pacific sea surface temperatures (SSTs) was found to be the best predictor of errors in numerical sub-seasonal forecasts of European temperature. In this diagnostic study we use reanalysis data to further investigate the teleconnection pathway and the processes behind its non-stationarity. We show that SST gradients associated with the dipole represent a combination of ENSO variability and west Pacific warming, and have become stronger since 1980. Associated patterns of suppressed and enhanced tropical heating are followed by quasi-stationary waves that linger for multiple weeks. Situations with La Niña-like gradients are followed by high-pressure centres over eastern Europe and Russia, three to six weeks later. Inverted situations are followed by high pressure over western Europe, three to six weeks later. The latter situation is conditional on a strong meridional tripole in north Atlantic SSTs and a co-located jet stream. Overall, the sub-seasonal pathway diagnosed in this study connects to patterns detected on seasonal scales, and confirms earlier findings that the summertime connectivity between the Pacific and Europe has shifted in recent decades.

Funder

Aard- en Levenswetenschappen, Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Horizon 2020

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3