Zonally asymmetric component of summer surface temperature trends caused by intraseasonal time-scale processes

Author:

Kim Dong WanORCID,Lee SukyoungORCID,Clark Joseph P.,Feldstein Steven B.

Abstract

AbstractRecent years have witnessed extreme heatwaves in Europe and western North America. This study shows that these regions stand out in the zonally asymmetric component of the long-term trend of boreal summer surface temperature, and that intraseasonal timescale processes play an important role in shaping the zonally asymmetric trend pattern. However, these two regions have warmed by different mechanisms. Over Europe, the warming is mostly caused by the positive trend of the net (downward minus upward) surface shortwave radiation weighted by its intraseasonal timescale connection with the skin temperature. The long-term warming in western North America has been caused by the declining surface latent heat flux (weakened evaporative cooling) weighted by its intraseasonal connection with the skin temperature. These mechanisms are consistent with those identified in earlier studies of individual extreme events in the two regions, indicating that part of the long trends are a manifestation of extreme events. The overall findings indicate that to make accurate projections of regional climate change using climate model simulations, it is critical to ensure that the models also accurately simulate intraseasonal variability.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3