The Representation of Atmospheric Blocking and the Associated Low-Frequency Variability in Two Seasonal Prediction Systems

Author:

Athanasiadis Panos J.1,Bellucci Alessio1,Hermanson Leon2,Scaife Adam A.2,MacLachlan Craig2,Arribas Alberto2,Materia Stefano1,Borrelli Andrea1,Gualdi Silvio3

Affiliation:

1. CMCC, Bologna, Italy

2. Met Office Hadley Centre, Exeter, United Kingdom

3. CMCC, and INGV-CMCC, Bologna, Italy

Abstract

Abstract Primarily as a response to boundary forcings, certain components of the atmospheric intraseasonal variability are potentially predictable. Particularly referring to the extratropics, the current generation of seasonal forecasting systems is making advancements in predicting these components by realistically initializing many components of the climate system, using higher resolution and utilizing large ensemble sizes. The operational seasonal prediction system of the Met Office (UKMO) and the corresponding system of the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The UKMO system achieves unprecedented high scores in predicting the winter mean phase of the North Atlantic Oscillation (NAO; correlation 0.62) and the Pacific–North American pattern (PNA; correlation 0.82). The CMCC system, despite its smaller ensemble size and coarser resolution, also exhibits significant skill (0.42 for NAO, 0.51 for PNA). Low-frequency variability is underrepresented in both models, particularly in the eastern North Atlantic. Consequently, their intrinsic variability patterns (sectoral EOFs) are somewhat different from the observed patterns. Regarding the representation of wintertime Northern Hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at 500 hPa. The blocking signature on the circulation and the dependence of blocking frequency on the NAO are also quite realistic for both systems. Finally, the Met Office system exhibits significant skill in predicting the winter mean frequency of blocking that relates to the NAO.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3