Spatial Weighting and Iterative Projection Methods for EOFs

Author:

Baldwin Mark P.1,Stephenson David B.2,Jolliffe Ian T.2

Affiliation:

1. NorthWest Research Associates, Seattle, Washington

2. School of Engineering, Computing, and Mathematics, University of Exeter, Exeter, United Kingdom

Abstract

Abstract Often there is a need to consider spatial weighting in methods for finding spatial patterns in climate data. The focus of this paper is on techniques that maximize variance, such as empirical orthogonal functions (EOFs). A weighting matrix is introduced into a generalized framework for dealing with spatial weighting. One basic principal in the design of the weighting matrix is that the resulting spatial patterns are independent of the grid used to represent the data. A weighting matrix can also be used for other purposes, such as to compensate for the neglect of unrepresented subgrid-scale variance or, in the form of a prewhitening filter, to maximize the signal-to-noise ratio of EOFs. The new methodology is applicable to other types of climate pattern analysis, such as extended EOF analysis and maximum covariance analysis. The increasing availability of large datasets of three-dimensional gridded variables (e.g., reanalysis products and model output) raises special issues for data-reduction methods such as EOFs. Fast, memory-efficient methods are required in order to extract leading EOFs from such large datasets. This study proposes one such approach based on a simple iteration of successive projections of the data onto time series and spatial maps. It is also demonstrated that spatial weighting can be combined with the iterative methods. Throughout the paper, multivariate statistics notation is used, simplifying implementation as matrix commands in high-level computing languages.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3