Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review

Author:

Kautz Lisa-Ann,Martius OliviaORCID,Pfahl StephanORCID,Pinto Joaquim G.ORCID,Ramos Alexandre M.ORCID,Sousa Pedro M.ORCID,Woollings Tim

Abstract

Abstract. The physical understanding and timely prediction of extreme weather events are of enormous importance to society due to their associated impacts. In this article, we highlight several types of weather extremes occurring in Europe in connection with a particular atmospheric flow pattern, known as atmospheric blocking. This flow pattern effectively blocks the prevailing westerly large-scale atmospheric flow, resulting in changing flow anomalies in the vicinity of the blocking system and persistent conditions in the immediate region of its occurrence. Blocking systems are long-lasting, quasi-stationary and self-sustaining systems that occur frequently over certain regions. Their presence and characteristics have an impact on the predictability of weather extremes and can thus be used as potential indicators. The phasing between the surface and the upper-level blocking anomalies is of major importance for the development of the extreme event. In summer, heat waves and droughts form below the blocking anticyclone primarily via large-scale subsidence that leads to cloud-free skies and, thus, persistent shortwave radiative warming of the ground. In winter, cold waves that occur during atmospheric blocking are normally observed downstream or south of these systems. Here, meridional advection of cold air masses from higher latitudes plays a decisive role. Depending on their location, blocking systems also may lead to a shift in the storm track, which influences the occurrence of wind and precipitation anomalies. Due to these multifaceted linkages, compound events are often observed in conjunction with blocking conditions. In addition to the aforementioned relations, the predictability of extreme events associated with blocking and links to climate change are assessed. Finally, current knowledge gaps and pertinent research perspectives for the future are discussed.

Funder

AXA Research Fund

Deutsche Forschungsgemeinschaft

Fundação para a Ciência e a Tecnologia

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3