Comparative Analysis of the Latest Global Oceanic Precipitation Estimates from GPM V07 and GPCP V3.2 Products

Author:

Behrangi Ali1ORCID,Song Yang1,Huffman George J.2,Adler Robert F.3

Affiliation:

1. a Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

2. b NASA Goddard Space Flight Center, Greenbelt, Maryland

3. c ESSIC, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract Satellites bring opportunities to quantify precipitation amount and distribution over the globe, critical to understanding how the Earth system works. The amount and spatial distribution of oceanic precipitation from the latest versions (V07 and the previous version) of the Global Precipitation Measurement (GPM) Core Observatory instruments and selected members of the constellation of passive microwave sensors are quantified and compared with other products such as the Global Precipitation Climatology Project (GPCP V3.2); the Merged CloudSat, TRMM, and GPM (MCTG) climatology; and ERA5. Results show that GPM V07 products have a higher precipitation rate than the previous version, except for the radar-only product. Within ∼65°S–65°N, covered by all of the instruments, this increase ranges from about 9% for the combined radar–radiometer product to about 16% for radiometer-only products. While GPM precipitation products still show lower mean precipitation rate than MCTG (except over the tropics and Arctic Ocean), the V07 products (except radar-only) are generally more consistent with MCTG and GPCP V3.2 than V05. Over the tropics (25°S–25°N), passive microwave sounders show the highest precipitation rate among all of the precipitation products studied and the highest increase (∼19%) compared to their previous version. Precipitation products are least consistent in midlatitude oceans in the Southern Hemisphere, displaying the largest spread in mean precipitation rate and location of latitudinal peak precipitation. Precipitation products tend to show larger spread over regions with low and high values of sea surface temperature and total precipitable water. The analysis highlights major discrepancies among the products and areas for future research.

Funder

Division of Earth Sciences

Earth Sciences Division

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference56 articles.

1. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present);Adler, R. F.,2003

2. A ten-year tropical rainfall climatology based on a composite of TRMM products;Adler, R. F.,2009

3. Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP);Adler, R. F.,2012

4. Global precipitation: Means, variations and trends during the satellite era (1979–2014);Adler, R. F.,2017

5. ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better?;Albergel, C.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3