Improving Aerosol Radiative Forcing and Climate in E3SM: Impacts of New Cloud Microphysics and Improved Wet Removal Treatments

Author:

Shan Yunpeng1ORCID,Fan Jiwen12ORCID,Zhang Kai1ORCID,Shpund Jacob1,Terai Christopher3ORCID,Zhang Guang J.4ORCID,Song Xiaoliang4ORCID,Chen Chih‐Chieh‐Jack5ORCID,Lin Wuyin6,Liu Xiaohong7ORCID,Shrivastava Manish1ORCID,Wang Hailong1ORCID,Xie Shaocheng3

Affiliation:

1. Pacific Northwest National Laboratory Richland WA USA

2. Argonne National Laboratory Lemont IL USA

3. Lawrence Livermore National Laboratory Livermore CA USA

4. Scripps Institution of Oceanography La Jolla CA USA

5. Climate and Global Dynamics Division, NSF National Center for Atmospheric Research Boulder CO USA

6. Brookhaven National Laboratory Upton NY USA

7. Texas A&M University College Station TX USA

Abstract

AbstractNumerous Earth system models exhibit excessive aerosol effective forcing at the top of the atmosphere (TOA), including the Department of Energy's Energy Exascale Earth System Model (E3SM). Here, in the context of the E3SM version 3 effort, the predicted particle property (P3) stratiform cloud microphysics scheme and an enhanced deep convection parameterization suite (ZM_plus) are implemented into E3SM. The ZM_plus includes a convective cloud microphysics scheme, a multi‐scale coherent structure parameterization for mesoscale convective systems, and a revised cloud base mass flux formulation considering impacts of the large‐scale environment. The P3 scheme improved cloud and radiation particularly over the Northern Hemisphere and the frequency of heavy precipitation over the tropics, and the ZM_plus improved clouds in the tropics. P3 decreases aerosol effective forcing by 0.15 W m−2, while the ZM_plus increases it by 0.27 W m−2, resulting from excessive direct (0.31 W m−2) and indirect forcing (−1.79 W m−2). The excessive aerosol forcings are due to aerosol overestimation associated with insufficient aerosol wet removal. By improving the physical treatments in the aerosol wet removal, we effectively mitigate anthropogenic aerosol overestimation and thus attenuate direct (0.09 W m−2) and indirect aerosol forcing (−1.52 W m−2). Adjustment to primary organic matter hygroscopicity reduces direct and indirect forcing to more reasonable values: −0.13 W m−2 and −1.31 W m−2, respectively. On climatology, improved aerosol treatments mitigate overestimation of aerosol optical depth.

Funder

Argonne National Laboratory

University of Chicago

U.S. Department of Energy

Office of Science

Biological and Environmental Research

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3