A Study of Precipitation Inversion in Xinjiang Region Based on FY-4A and Machine Learning Models

Author:

Zhang Zhengyang1,Li Jiang1,Li Aqiao1,Li Andrew2

Affiliation:

1. Xinjiang Meteorological Information Center, China

2. Shouldice Hospital, Canada

Abstract

To compensate for the fact meteorological observation stations in Xinjiang are sparse, and spatial and temporal resolution of precipitation monitoring is insufficient in existing studies, in this study the authors proposed a precipitation inversion model that is based on infrared observation data from the Fengyun-4A satellite and the machine learning method. By combining multichannel satellite remote sensing data with ground meteorological observations, they constructed various machine learning models, such as deep forest, random forest, LightGBMs (light gradient-boosting machines), and XGBoost (extreme gradient boosting), using root-mean-square error, mean absolute error, and the coefficient of determination to evaluate and compare the model performance. The trained deep forest model was used to invert the precipitation in Xinjiang from June to August2023. The results show that the machine learning method is effective in exploiting the nonlinear relationship between the satellite observation features and the ground precipitation, and the inversion results are in good agreement with the ground observation data. Among these models, the deep forest model performs best in daytime conditions, and LightGBM is slightly better in nighttime conditions.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3