Assessment of Atmospheric and Surface Energy Budgets Using Observation-Based Data Products

Author:

Mayer Michael,Kato Seiji,Bosilovich Michael,Bechtold Peter,Mayer Johannes,Schröder Marc,Behrangi Ali,Wild Martin,Kobayashi Shinya,Li Zhujun,L’Ecuyer Tristan

Abstract

AbstractAccurate diagnosis of regional atmospheric and surface energy budgets is critical for understanding the spatial distribution of heat uptake associated with the Earth’s energy imbalance (EEI). This contribution discusses frameworks and methods for consistent evaluation of key quantities of those budgets using observationally constrained data sets. It thereby touches upon assumptions made in data products which have implications for these evaluations. We evaluate 2001–2020 average regional total (TE) and dry static energy (DSE) budgets using satellite-based and reanalysis data. For the first time, a consistent framework is applied to the ensemble of the 5th generation European Reanalysis (ERA5), version 2 of modern-era retrospective analysis for research and applications (MERRA-2), and the Japanese 55-year Reanalysis (JRA55). Uncertainties of the computed budgets are assessed through inter-product spread and evaluation of physical constraints. Furthermore, we use the TE budget to infer fields of net surface energy flux. Results indicate biases < 1 W/m2 on the global, < 5 W/m2 on the continental, and ~ 15 W/m2 on the regional scale. Inferred net surface energy fluxes exhibit reduced large-scale biases compared to surface flux data based on remote sensing and models. We use the DSE budget to infer atmospheric diabatic heating from condensational processes. Comparison to observation-based precipitation data indicates larger uncertainties (10–15 Wm−2 globally) in the DSE budget compared to the TE budget, which is reflected by increased spread in reanalysis-based fields. Continued validation efforts of atmospheric energy budgets are needed to document progress in new and upcoming observational products, and to understand their limitations when performing EEI research.

Funder

Austrian Science Fund

University of Vienna

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3