Forecasting Severe Weather with Random Forests

Author:

Hill Aaron J.1,Herman Gregory R.1,Schumacher Russ S.1

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

AbstractUsing nine years of historical forecasts spanning April 2003–April 2012 from NOAA’s Second Generation Global Ensemble Forecast System Reforecast (GEFS/R) ensemble, random forest (RF) models are trained to make probabilistic predictions of severe weather across the contiguous United States (CONUS) at Days 1–3, with separate models for tornado, hail, and severe wind prediction at Day 1 in an analogous fashion to the Storm Prediction Center’s (SPC’s) convective outlooks. Separate models are also trained for the western, central, and eastern CONUS. Input predictors include fields associated with severe weather prediction, including CAPE, CIN, wind shear, and numerous other variables. Predictor inputs incorporate the simulated spatiotemporal evolution of these atmospheric fields throughout the forecast period in the vicinity of the forecast point. These trained RF models are applied to unseen inputs from April 2012 to December 2016, and their forecasts are evaluated alongside the equivalent SPC outlooks. The RFs objectively make statistical deductions about the relationships between various simulated atmospheric fields and observations of different severe weather phenomena that accord with the community’s physical understandings about severe weather forecasting. Using these quantified flow-dependent relationships, the RF outlooks are found to produce calibrated probabilistic forecasts that slightly underperform SPC outlooks at Day 1, but significantly outperform their outlooks at Days 2 and 3. In all cases, a blend of the SPC and RF outlooks significantly outperforms the SPC outlooks alone, suggesting that use of RFs can improve operational severe weather forecasting throughout the Day 1–3 period.

Funder

National Oceanic and Atmospheric Administration

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference90 articles.

1. Forecasting hail using a one-dimensional hail growth model within WRF;Adams-Selin;Mon. Wea. Rev.,2016

2. Adjustments in tornado counts, F-scale intensity, and path width for assessing significant tornado destruction;Agee;J. Appl. Meteor. Climatol.,2014

3. Approximate is better than “exact” for interval estimation of binomial proportions;Agresti;Amer. Stat.,1998

4. Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique;Ahijevych;Wea. Forecasting,2016

5. Probabilistic prediction of tropical cyclone intensity with an analog ensemble;Alessandrini;Mon. Wea. Rev.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3