Probabilistic Prediction of Tropical Cyclone Intensity with an Analog Ensemble

Author:

Alessandrini Stefano1,Delle Monache Luca1,Rozoff Christopher M.1,Lewis William E.2

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

2. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

An analog ensemble (AnEn) technique is applied to the prediction of tropical cyclone (TC) intensity (i.e., maximum 1-min averaged 10-m wind speed). The AnEn is an inexpensive, naturally calibrated ensemble prediction of TC intensity derived from a training dataset of deterministic Hurricane Weather Research and Forecasting (HWRF; 2015 version) Model forecasts. In this implementation of the AnEn, a set of analog forecasts is generated by searching an HWRF archive for forecasts sharing key features with the current HWRF forecast. The forecast training period spans 2011–15. The similarity of a current forecast with past forecasts is estimated using predictors derived from the HWRF reforecasts that capture thermodynamic and kinematic properties of a TC’s environment and its inner core. Additionally, the value of adding a multimodel intensity consensus forecast as an AnEn predictor is examined. Once analogs are identified, the verifying intensity observations corresponding to each analog HWRF forecast are used to produce the AnEn intensity prediction. In this work, the AnEn is developed for both the eastern Pacific and Atlantic Ocean basins. The AnEn’s performance with respect to mean absolute error (MAE) is compared with the raw HWRF output, the official National Hurricane Center (NHC) forecast, and other top-performing NHC models. Also, probabilistic intensity forecasts are compared with a quantile mapping model based on the HWRF’s intensity forecast. In terms of MAE, the AnEn outperforms HWRF in the eastern Pacific at all lead times examined and up to 24-h lead time in the Atlantic. Also, unlike traditional dynamical ensembles, the AnEn produces an excellent spread–skill relationship.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3