Intercomparison of Deep Learning Architectures for the Prediction of Precipitation Fields With a Focus on Extremes

Author:

Otero Noelia1ORCID,Horton Pascal1ORCID

Affiliation:

1. Institute of Geography and Oeschger Centre for Climate Change Research University of Bern Bern Switzerland

Abstract

AbstractIn recent years, the use of deep learning methods has rapidly increased in many research fields. Similarly, they have become a powerful tool within the climate scientific community. Deep learning methods have been successfully applied for different tasks, such as the identification of atmospheric patterns, weather extreme classification, or weather forecasting. However, due to the inherent complexity of atmospheric processes, the ability of deep learning models to simulate natural processes, particularly in the case of weather extremes, is still challenging. Therefore, a thorough evaluation of their performance and robustness in predicting precipitation fields is still needed, especially for extreme precipitation events, which can have devastating consequences in terms of infrastructure damage, economic losses, and even loss of life. In this study, we present a comprehensive evaluation of a set of deep learning architectures to simulate precipitation, including heavy precipitation events (>95th percentile) and extreme events (>99th percentile) over the European domain. Among the architectures analyzed here, the U‐Net network was found to be superior and outperformed the other networks in simulating precipitation events. In particular, we found that a simplified version of the original U‐Net with two encoder‐decoder levels generally achieved similar skill scores than deeper versions for predicting precipitation extremes, while significantly reducing the overall complexity and computing resources. We further assess how the model predicts through the attribution heatmaps from a layer‐wise relevance propagation explainability method.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3