Automated Input Variable Selection for Analog Methods Using Genetic Algorithms

Author:

Horton P.1ORCID,Martius O.1ORCID,Grimm S. L.2ORCID

Affiliation:

1. Institute of Geography Oeschger Centre for Climate Change Research University of Bern Bern Switzerland

2. Physikalisches Institut University of Bern Bern Switzerland

Abstract

AbstractAnalog methods (AMs) have long been used for precipitation prediction and climate studies. However, they rely on manual selections of parameters, such as predictor variables and analogy criteria. Previous work showed the potential of genetic algorithms (GAs) to optimize most of the AM parameters. This research goes one step further and investigates the potential of GAs for automating the selection of the input variables and the analogy criteria (distance metric between two data fields) in AMs. Our study focuses on the prediction of daily precipitation in central Europe, specifically Switzerland, as a representative case. Comparative analysis against established methods demonstrates the superiority of GA‐optimized AMs in terms of predictive accuracy. The selected input variables exhibit strong associations with key meteorological processes that influence the generation of precipitation. Further, we identify a new analogy criterion inspired by the Teweles‐Wobus criterion, which consistently performs better than other Euclidean distances and could be used in classic AMs. In contrast to conventional stepwise selection approaches, GA‐optimized AMs display a preference for a flatter structure characterized by a single level of analogy and an increased number of variables. Overall, our study demonstrates the successful application of GAs in automating input variable selection for AMs, with potential implications for application in diverse locations and data exploration to predict alternative predictands. In a broader context, GAs could be used to perform input variable selection in other data‐driven methods, opening perspectives for a broad range of applications.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3