Comparing Partial and Continuously Cycling Ensemble Kalman Filter Data Assimilation Systems for Convection-Allowing Ensemble Forecast Initialization

Author:

Abstract

Abstract Several limited-area 80-member ensemble Kalman filter (EnKF) data assimilation systems with 15-km horizontal grid spacing were run over a computational domain spanning the conterminous United States (CONUS) for a 4-week period. One EnKF employed continuous cycling, where the prior ensemble was always the 1-h forecast initialized from the previous cycle’s analysis. In contrast, the other EnKFs used a partial cycling procedure, where limited-area states were discarded after 12 or 18 h of self-contained hourly cycles and reinitialized the next day from global model fields. “Blended” states were also constructed by combining large scales from global ensemble initial conditions (ICs) with small scales from limited-area continuously cycling EnKF analyses using a low-pass filter. Both the blended states and EnKF analysis ensembles initialized 36-h, 10-member ensemble forecasts with 3-km horizontal grid spacing. Continuously cycling EnKF analyses initialized ∼1–18-h precipitation forecasts that were comparable to or somewhat better than those with partial cycling EnKF ICs. Conversely, ∼18–36-h forecasts with partial cycling EnKF ICs were comparable to or better than those with unblended continuously cycling EnKF ICs. However, blended ICs yielded ∼18–36-h forecasts that were statistically indistinguishable from those with partial cycling ICs. ICs that more closely resembled global analysis spectral characteristics at wavelengths > 200 km, like partial cycling and blended ICs, were associated with relatively good ∼18–36-h forecasts. Ultimately, findings suggest that EnKFs employing a combination of continuous cycling and blending can potentially replace the partial cycling assimilation systems that currently initialize operational limited-area models over the CONUS without sacrificing forecast quality. SIGNIFICANCE STATEMENT Numerical weather prediction models (i.e., weather models) are initialized through a process called data assimilation, which combines real atmospheric observations with a previous short-term weather model forecast using statistical techniques. The overarching data assimilation strategy currently used to initialize operational regional weather models over the United States has several disadvantages that ultimately limit progress toward improving weather model forecasts. Thus, we suggest an alternative data assimilation strategy be adopted to initialize a next-generation, high-resolution (∼3 km) probabilistic forecast system currently being developed. This alternative approach preserves forecast quality while fostering a framework that can accelerate weather model improvements, which in turn will lead to better weather forecasts.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3