Abstract
Abstract
Several limited-area 80-member ensemble Kalman filter (EnKF) data assimilation systems with 15-km horizontal grid spacing were run over a computational domain spanning the conterminous United States (CONUS) for a 4-week period. One EnKF employed continuous cycling, where the prior ensemble was always the 1-h forecast initialized from the previous cycle’s analysis. In contrast, the other EnKFs used a partial cycling procedure, where limited-area states were discarded after 12 or 18 h of self-contained hourly cycles and reinitialized the next day from global model fields. “Blended” states were also constructed by combining large scales from global ensemble initial conditions (ICs) with small scales from limited-area continuously cycling EnKF analyses using a low-pass filter. Both the blended states and EnKF analysis ensembles initialized 36-h, 10-member ensemble forecasts with 3-km horizontal grid spacing. Continuously cycling EnKF analyses initialized ∼1–18-h precipitation forecasts that were comparable to or somewhat better than those with partial cycling EnKF ICs. Conversely, ∼18–36-h forecasts with partial cycling EnKF ICs were comparable to or better than those with unblended continuously cycling EnKF ICs. However, blended ICs yielded ∼18–36-h forecasts that were statistically indistinguishable from those with partial cycling ICs. ICs that more closely resembled global analysis spectral characteristics at wavelengths > 200 km, like partial cycling and blended ICs, were associated with relatively good ∼18–36-h forecasts. Ultimately, findings suggest that EnKFs employing a combination of continuous cycling and blending can potentially replace the partial cycling assimilation systems that currently initialize operational limited-area models over the CONUS without sacrificing forecast quality.
SIGNIFICANCE STATEMENT
Numerical weather prediction models (i.e., weather models) are initialized through a process called data assimilation, which combines real atmospheric observations with a previous short-term weather model forecast using statistical techniques. The overarching data assimilation strategy currently used to initialize operational regional weather models over the United States has several disadvantages that ultimately limit progress toward improving weather model forecasts. Thus, we suggest an alternative data assimilation strategy be adopted to initialize a next-generation, high-resolution (∼3 km) probabilistic forecast system currently being developed. This alternative approach preserves forecast quality while fostering a framework that can accelerate weather model improvements, which in turn will lead to better weather forecasts.
Funder
National Oceanic and Atmospheric Administration
Publisher
American Meteorological Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献