Improvements in the spread–skill relationship of precipitation in a convective‐scale ensemble through blending

Author:

Gainford Adam1ORCID,Gray Suzanne L.1ORCID,Frame Thomas H. A.1ORCID,Porson Aurore N.2ORCID,Milan Marco3ORCID

Affiliation:

1. Department of Meteorology University of Reading Reading UK

2. MetOffice@Reading University of Reading Reading UK

3. Met Office Exeter UK

Abstract

AbstractConvective‐scale ensembles are used routinely in operational centres around the world to produce probabilistic precipitation forecasts, but a lack of spread between members is providing forecasts that are frequently overconfident. This deficiency can be corrected by increasing spread, increasing forecast accuracy, or both. A recent development in the Met Office forecasting system is the inclusion of large‐scale blending (LSB) in the convective‐scale data assimilation scheme. This method aims to reduce the synoptic‐scale forecast error in the analysis by reducing the influence of the convective‐scale data assimilation at scales that are too large to be constrained by the limited domain. These scales are instead initialised using output from the global data assimilation scheme, which we expect to reduce the forecast error and thus improve the spread–skill relationship. In this study, we quantify the impact of LSB on the spread–skill relationship of hourly precipitation accumulations by comparing forecast ensembles with and without LSB over a 17‐day summer trial period. This trial found modest but significant improvements to the spread–skill relationship as calculated using metrics based on the Fractions Skill Score. Skill is improved for a lower precipitation centile by an average of 0.56% at the largest scales, but a corresponding degradation of spread limits the overall correction. The spread–skill disparity is reduced the most in the higher centiles due to a more muted spread response, with significant reductions of up to 0.40% obtained at larger scales. Case‐study analysis using a novel extension of the Localised Fractions Skill Score demonstrates how spread–skill improvements transfer to smaller‐scale features, not just the scales that have been blended. There are promising signs that further spread–skill improvements can be made by implementing LSB more fully within the ensemble, and we encourage the Met Office to continue developing this technique.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3