Intercomparison of Spatial Forecast Verification Methods: Identifying Skillful Spatial Scales Using the Fractions Skill Score

Author:

Mittermaier Marion1,Roberts Nigel2

Affiliation:

1. Forecasting Research and Development, Met Office, Exeter, United Kingdom

2. Met Office, Joint Centre for Mesoscale Meteorology, University of Reading, Reading, United Kingdom

Abstract

Abstract The fractions skill score (FSS) was one of the measures that formed part of the Intercomparison of Spatial Forecast Verification Methods project. The FSS was used to assess a common dataset that consisted of real and perturbed Weather Research and Forecasting (WRF) model precipitation forecasts, as well as geometric cases. These datasets are all based on the NCEP 240 grid, which translates to approximately 4-km resolution over the contiguous United States. The geometric cases showed that the FSS can provide a truthful assessment of displacement errors and forecast skill. In addition, the FSS can be used to determine the scale at which an acceptable level of skill is reached and this usage is perhaps more helpful than interpreting the actual FSS value. This spatial-scale approach is becoming more popular for monitoring operational forecast performance. The study also shows how the FSS responds to forecast bias. A more biased forecast always gives lower FSS values at large scales and usually at smaller scales. It is possible, however, for a more biased forecast to give a higher score at smaller scales, when additional rain overlaps the observed rain. However, given a sufficiently large sample of forecasts, a more biased forecast system will score lower. The use of percentile thresholds can remove the impacts of the bias. When the proportion of the domain that is “wet” (the wet-area ratio) is small, subtle differences introduced through near-threshold misses can lead to large changes in FSS magnitude in individual cases (primarily because the bias is changed). Reliable statistics for small wet-area ratios require a larger sample of forecasts. Care needs to be taken in the choice of verification domain. For high-resolution models, the domain should be large enough to encompass the length scale of the typical mesoscale forcing (e.g., upper-level troughs or squall lines). If the domain is too large, the wet-area ratios will always be small. If the domain is too small, fluctuations in the wet-area ratio can be large and larger spatial errors may be missed. The FSS is a good measure of the spatial accuracy of precipitation forecasts. Different methods are needed to determine other patterns of behavior.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3