Object-Based Verification of Precipitation Forecasts. Part II: Application to Convective Rain Systems

Author:

Davis Christopher1,Brown Barbara1,Bullock Randy1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract The authors develop and apply an algorithm to define coherent areas of precipitation, emphasizing mesoscale convection, and compare properties of these areas with observations obtained from NCEP stage-IV precipitation analyses (gauge and radar combined). In Part II, fully explicit 12–36-h forecasts of rainfall from the Weather Research and Forecasting model (WRF) are evaluated. These forecasts are integrated on a 4-km mesh without a cumulus parameterization. Rain areas are defined similarly to Part I, but emphasize more intense, smaller areas. Furthermore, a time-matching algorithm is devised to group spatially and temporally coherent areas into rain systems that approximate mesoscale convective systems. In general, the WRF model produces too many rain areas with length scales of 80 km or greater. Rain systems typically last too long, and are forecast to occur 1–2 h later than observed. The intensity distribution among rain systems in the 4-km forecasts is generally too broad, especially in the late afternoon, in sharp contrast to the intensity distribution obtained on a coarser grid with parameterized convection in Part I. The model exhibits the largest positive size and intensity bias associated with systems over the Midwest and Mississippi Valley regions, but little size bias over the High Plains, Ohio Valley, and the southeast United States. For rain systems lasting 6 h or more, the critical success index for matching forecast and observed rain systems agrees closely with that obtained in a related study using manually determined rain systems.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference13 articles.

1. Baldwin, M. E., and K. E.Mitchell, 1997: The NCEP hourly multi-sensor U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 54–55.

2. Baldwin, M. E., and S.Lakshmivarahan, 2003: Development of an events-oriented verification system using data mining and image processing algorithms. Preprints, Third Conf. on Artificial Intelligence Applications to Environmental Science, Long Beach, CA, Amer. Meteor. Soc., CD-ROM, 4.6.

3. The new NMC mesoscale Eta model: Description and forecast examples.;Black;Wea. Forecasting,1994

4. A comparison of measures-oriented and distributions-oriented approaches to forecast verification.;Brooks;Wea. Forecasting,1996

5. Inferences of predictability associated with warm season precipitation episodes.;Carbone;J. Atmos. Sci.,2002

Cited by 199 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3