Object-Based Verification of Precipitation Forecasts. Part I: Methodology and Application to Mesoscale Rain Areas

Author:

Davis Christopher1,Brown Barbara1,Bullock Randy1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract A recently developed method of defining rain areas for the purpose of verifying precipitation produced by numerical weather prediction models is described. Precipitation objects are defined in both forecasts and observations based on a convolution (smoothing) and thresholding procedure. In an application of the new verification approach, the forecasts produced by the Weather Research and Forecasting (WRF) model are evaluated on a 22-km grid covering the continental United States during July–August 2001. Observed rainfall is derived from the stage-IV product from NCEP on a 4-km grid (averaged to a 22-km grid). It is found that the WRF produces too many large rain areas, and the spatial and temporal distribution of the rain areas reveals regional underestimates of the diurnal cycle in rain-area occurrence frequency. Objects in the two datasets are then matched according to the separation distance of their centroids. Overall, WRF rain errors exhibit no large biases in location, but do suffer from a positive size bias that maximizes during the later afternoon. This coincides with an excessive narrowing of the rainfall intensity range, consistent with the dominance of parameterized convection. Finally, matching ability has a strong dependence on object size and is interpreted as the influence of relatively predictable synoptic-scale systems on the larger areas.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference24 articles.

1. Baldwin, M. E., and S.Lakshmivarahan, 2003: Development of an events-oriented verification system using data mining and image processing algorithms. Preprints, Third Conf. on Artificial Intelligence Applications to Environmental Science, Long Beach, CA, Amer. Meteor. Soc., CD-ROM, 4.6.

2. The new NMC mesoscale Eta model: Description and forecast examples.;Black;Wea. Forecasting,1994

3. Brooks, H. E., M.Kay, and J. A.Hart, 1998: Objective limits on forecasting skill of rare events. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 552–555.

4. A new intensity-scale approach for the verification of spatial precipitation forecasts.;Casati;Meteor. Appl.,2004

5. An objective technique for verifying sea breezes in high-resolution numerical weather prediction models.;Case;Wea. Forecasting,2004

Cited by 429 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3