Remote Sensing-Based Analysis of Precipitation Events: Spatiotemporal Characterization across China

Author:

Zhu Zhihua12,Peng Chutong3,Li Xue1,Zhang Ruihao1,Dai Xuejun1,Jiang Baolin1,Chen Jinxing1

Affiliation:

1. School of Geography and Tourism, Huizhou University, Huizhou 516007, China

2. School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China

3. School of Art and Design, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Precipitation occurs in individual events, but the event characteristics of precipitation are often neglected. This work seeks to identify the precipitation events on both spatial and temporal scales, explore the event characteristics of precipitation, and reveal the relationships between the different characteristics of precipitation events. To do this, we combined the Forward-in-Time (FiT) algorithm with the gridded hourly precipitation product to detect precipitation events in time and space over China. The identified precipitation events were analyzed to determine their characteristics. The results indicate that precipitation events can be detected and identified in time and space scales based on the FiT algorithm and the gridded hourly precipitation product. The precipitation total, duration, and intensity of these events decrease gradually from the southern (eastern) coastal regions to northern (western) inland areas of China. The event precipitation totals are strongly correlated with event duration and event maximum intensity; the totals are more strongly correlated with event maximum intensity and event intensity in the regions with lower precipitation than the regions with higher precipitation. More than 90% of precipitation events are shorter than 6 h, and events with long duration normally occur in temperate monsoon (TM) and subtropical/tropical monsoon (ST) climate zones. Heavy precipitation events with a duration longer than 7 h generally occur more than seven times per year in TM and ST climate zones. Our results suggest that precipitation analyses should sufficiently consider the characteristics of events across different regions.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Scientific Research Starting Foundation of Huizhou University for PhD and Prof.

uangDong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3