Precipitation trends determine future occurrences of compound hot–dry events

Author:

Bevacqua EmanueleORCID,Zappa GiuseppeORCID,Lehner FlavioORCID,Zscheischler JakobORCID

Abstract

AbstractCompound hot–dry events—co-occurring hot and dry extremes—frequently cause damages to human and natural systems, often exceeding separate impacts from heatwaves and droughts. Strong increases in the occurrence of these events are projected with warming, but associated uncertainties remain large and poorly understood. Here, using climate model large ensembles, we show that mean precipitation trends exclusively modulate the future occurrence of compound hot–dry events over land. This occurs because local warming will be large enough that future droughts will always coincide with at least moderately hot extremes, even in a 2 °C warmer world. By contrast, precipitation trends are often weak and equivocal in sign, depending on the model, region and internal climate variability. Therefore, constraining regional precipitation trends will also constrain future compound hot–dry events. These results help to assess future frequencies of other compound extremes characterized by strongly different trends in the drivers.

Publisher

Springer Science and Business Media LLC

Subject

Social Sciences (miscellaneous),Environmental Science (miscellaneous)

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3