Spatial Downscaling of Precipitation Data in Arid Regions Based on the XGBoost-MGWR Model: A Case Study of the Turpan–Hami Region

Author:

He Huanhuan123,Wang Jinjie123,Ding Jianli123,Wang Lei123ORCID

Affiliation:

1. College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China

2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China

3. Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China

Abstract

Accurate and reliable precipitation data are important for analyzing regional precipitation distribution, water resource management, and ecological environment construction. Due to the scarcity of meteorological stations in the Turpan–Hami region, precipitation observation conditions are limited, and it is difficult to obtain precipitation data. Firstly, the applicability of TRMM 3B43v7, GPM_3IMERGM 06, and CMORPH CDR satellite precipitation data for the Turpan–Hami Region was evaluated, and the products with better applicability were selected. Next, the Extreme Gradient Boosting Algorithm (XGBoost) and the Shapley Additive Explanations for Machine Learning (SHAP) model were combined to carry out a feature importance analysis on the climate factors affecting precipitation (mean temperature, actual evapotranspiration, wind speed, cloud cover), from which climate factors with a greater influence on precipitation were selected. Combined with climate factors, normalized difference vegetation index (NDVI), slope, aspect, and elevation as explanatory variables, a Multi-Scale Geographically Weighted Regression (MGWR) model was constructed to obtain the monthly precipitation data of 1 km spatial resolution in the Turpan–Hami area from 2001 to 2020. Finally, the spatiotemporal distribution characteristics and changing trend of precipitation in the Turpan–Hami region from 2001 to 2020 were analyzed. The results show that (1) GPM_3IMERGM 06 satellite precipitation data exhibits good applicability in the Turpan–Hami region. (2) The precision verification of the downscaling results from a monthly scale and an annual scale shows that the accuracy and spatial resolution of the data are improved after downscaling. (3) From 2001 to 2020, the precipitation in the Turpan–Hami region showed an insignificantly increasing trend.

Funder

Basic Resources Investigation Project of the Ministry of Science and Technology

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3