Implications of Self-Contained Radiance Bias Correction for Data Assimilation within the Hurricane Analysis and Forecasting System (HAFS)

Author:

Knisely Joseph1,Poterjoy Jonathan1

Affiliation:

1. a Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract The Hurricane Analysis and Forecasting System (HAFS) is the next-generation, FV3-based tropical cyclone (TC) forecasting system. Unlike operational implementations of NOAA’s Hurricane Weather Research and Forecast (HWRF) modeling system, current data assimilation (DA) capabilities in HAFS permit the uninterrupted basin-wide assimilation of measurements. This feature of HAFS opens a variety of new research directions for TC prediction, including new strategies for DA algorithm development and self-contained probabilistic forecasting. The present research focuses more narrowly on new opportunities HAFS brings for optimizing the use of satellite measurements for TC prediction. While satellite radiometers provide a wealth of information for characterizing temperature, moisture, and wind in TC environments, the provided measurements are often biased and contain unknown cross-channel error correlations. For mature global modeling systems, these statistics are estimated from information gathered during DA, namely, innovations collected over large spatial and temporal training periods. The estimated statistics, however, are imperfect owing to unknown error sources such as model process error, which are difficult to separate from observation error. As such, bias and uncertainty specifications that rely on information from external models are suboptimal—as is the current strategy for HWRF. In this paper, it will be demonstrated that bias estimation for satellite radiance observations is particularly sensitive to common design choices, such as using a bias model trained from the Global Data Assimilation System instead of within the native modeling system. Implications of this finding for TC prediction are examined over a 6-week period from 2020, which included the development and intensification of nine tropical cyclones. Significance Statement Tropical cyclone–focused numerical weather prediction is difficult due to complex nonlinear physical processes and a lack of in situ observations over open ocean. Prediction systems rely heavily on satellite radiance measurements, which have high spatial–temporal resolution over the entire domain but require bias correction. Estimation of observation bias requires long training periods and large spatial domain coverage, which is typically not permitted outside of global models. However, bias specification is strongly model dependent, as bias correction methods cannot easily separate model and observation bias. In this study, we perform satellite radiance bias specification internally for an experimental version of the NOAA Hurricane Analysis and Forecast System and demonstrate major implications for tropical cyclone prediction.

Funder

NOAA Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

1. The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for high-resolution data: The impact of airborne Doppler radar observations in an OSSE;Aksoy, A.,2012

2. A review of operational methods of variational and ensemble-variational data assimilation;Bannister, R. N.,2017

3. Satellite bias correction in the regional model ALADIN/CZ: Comparison of different VarBC approaches;Benáček, P.,2019

4. Biswas, M. K., D. Stark, and L. Carson, 2018: GFDL vortex tracker user’s guide version 3.9a. NOAA/GFDL Doc., 35 pp., https://dtcenter.org/sites/default/files/community-code/gfdl/standalone_tracker_UG_v3.9a.pdf.

5. Models of tropical cyclone wind distribution and beta-effect propagation for application to tropical cyclone track forecasting;Carr, L. E., III,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3