Spatial and Temporal Network Sampling Effects on the Correlation and Variance Structures of Rain Observations

Author:

Jameson A. R.1

Affiliation:

1. RJH Scientific, Inc., El Cajon, California

Abstract

Abstract Network observations are affected by the length of the temporal interval over which measurements are combined as well as by the size of the network. When the observation interval is small, only network size matters. Networks then act as high-pass filters that distort both the spatial correlation function ρr and, consequently, the variance spectrum. For an exponentially decreasing ρr, a method is presented for returning the observed spatial correlation to its original, intrinsic value. This can be accomplished for other forms of ρr. When the observation interval becomes large, however, advection enhances the contributions from longer wavelengths, leading to a distortion of ρr and the associated variance spectrum. However, there is no known way to correct for this effect, which means that the observation interval should be kept as small as possible in order to measure the spatial correlation correctly. Finally, it is shown that, in contrast to network measurements, remote sensing instruments act as low-pass filters, thus complicating comparisons between the two sets of observations. It is shown that when the network-observed spatial correlation function can be corrected to become a good estimate of the intrinsic spatial correlation function, the Fourier transform of this function (variance spectrum) can then be spatially low-pass filtered in a manner appropriate for the remote sensor. If desired, this filtered field can then be Fourier transformed to yield the spatial correlation function relevant to the remote sensor. The network and simulations of the remote sensor observations can then be compared to better understand the physics of differences between the two set of observations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3