On observations of correlation functions and power spectra in rain: obfuscation by advection and sampling

Author:

Jameson A. R.ORCID

Abstract

AbstractRain is often characterized using statistical approaches. Among the most common are temporal correlations and power (variance) spectra from time series measurements at a single location. Likewise, temporal observations over a network are used to deduce a radial distribution function and spatial power spectra. In such studies the potential effects of advection on the results are ignored. Moreover, observations involve filtering of the data. In time, this may involve sampling over a sufficiently long period so as to increase statistical confidence in the measurement. The same is also true for spatial observations over a network which must contain a sufficient number of instruments for a reliable characterization of the spatial variability. This also usually includes some form of averaging over time as well. Temporal averaging amounts to a low pass filter that attenuates contributions from higher frequencies. In contrast, the finite dimension of a network acts as a high-pass filter that tends to suppress the lower wavenumbers much larger than the dimension of the network. In this work the effects of both the advection of the rain and the observational filtering are considered for the simplest case of wide-sense statistically stationary and homogeneous rain along one-dimension for rain exponentially correlated in both space and time. It is found that advection and filtering can significantly shift the portrayal of the rain from the true structures. Consequently, rainfall characterizations from observations should not be over-generalized to other situations.

Funder

National Scienct Foundatio

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3