Abstract
A realistic approach for gathering high-resolution observations of the rainfall rate, R, in the vertical plane is to use data from vertically pointing Doppler radars. After accounting for the vertical air velocity and attenuation, it is possible to determine the fine, spatially resolved drop size spectra and to calculate R for further statistical analyses. The first such results in a vertical plane are reported here. Specifically, we present results using MRR-Pro Doppler radar observations at resolutions of ten meters in height over the lowest 1.28 km, as well as ten seconds in time, over four sets of observations using two different radars at different locations. Both the correlation functions and power spectra are useful for translating observations and numerical model outputs of R from one scale down to other scales that may be more appropriate for particular applications, such as flood warnings and soil erosion, for example. However, it was found in all cases that, while locally applicable radial power spectra could be calculated, because of statistical heterogeneity most of the power spectra lost all generality, and proper correlation functions could not be computed in general except for one 17-min interval. Nevertheless, these results are still useful since they can be combined to develop catalogs of power spectra over different meteorological conditions and in different climatological settings and locations. Furthermore, even with the limitations of these data, this approach is being used to gain a deeper understanding of rainfall to be reported in a forthcoming paper.
Funder
National Science Foundation
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献