Temporal and Spatial Autocorrelations from Expendable Digital Dropsondes (XDDs) in Tropical Cyclones

Author:

Nelson T. Connor1,Harrison Lee1,Corbosiero Kristen L.2

Affiliation:

1. Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

2. Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

AbstractThe newly developed Expendable Digital Dropsondes (XDDs) allow for high spatial and temporal resolution observations of the kinematic and thermodynamic structures in tropical cyclones (TCs). It is important to evaluate both the temporal and spatial autocorrelations within the recorded data to address concerns about spatial interpolation, statistical significance of individual data points, and launch-rate spatial requirements for future dropsonde studies in TCs. Data from 437 XDDs launched into Hurricanes Marty (27–28 September), Joaquin (2–5 October), and Patricia (20–23 October) during the 2015 Tropical Cyclone Intensity (TCI) experiment are used to compute temporal and spatial autocorrelations for vertical velocity, temperature, horizontal wind speed, and equivalent potential temperature. All of the examined variables had temporal autocorrelation scales between approximately 10 and 40 s, with most between 20 and 30 s. Most of the spatial autocorrelation scales were estimated to be 3–10 km. The temporal autocorrelation scales for vertical velocity, horizontal wind speed, and equivalent potential temperature were correlated with updraft depth. Vertical velocity usually had the smallest mean, and median, temporal and estimated spatial autocorrelation scales of approximately 20 s and 3–6 km, respectively. The estimated horizontal scales are below the median sounding spacing and suggest that an increase in the launch rate of the XDDs by a factor of 3–4 from the TCI sampling rate is needed to adequately depict TC kinematics and structure in transects of soundings. The results also indicate that current temporal sampling rates are adequate to depict TC kinematics and structure in a single sounding.

Funder

Office of Naval Research Global

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3