Convective Self-Aggregation and Tropical Cyclogenesis under the Hypohydrostatic Rescaling

Author:

Boos William R.1,Fedorov Alexey1,Muir Les1

Affiliation:

1. Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Abstract

Abstract The behavior of rotating and nonrotating aggregated convection is examined at various horizontal resolutions using the hypohydrostatic, or reduced acceleration in the vertical (RAVE), rescaling. This modification of the equations of motion reduces the scale separation between convective- and larger-scale motions, enabling the simultaneous and explicit representation of both types of flow in a single model without convective parameterization. Without the RAVE rescaling, a dry bias develops when simulations of nonrotating radiative–convective equilibrium are integrated at coarse resolution in domains large enough to permit convective self-aggregation. The rescaling reduces this dry bias, and here it is suggested that the rescaling moistens the troposphere by weakening the amplitude and slowing the group velocity of gravity waves, thus reducing the subsidence drying around aggregated convection. Separate simulations of rotating radiative–convective equilibrium exhibit tropical cyclogenesis; as horizontal resolution is coarsened without the rescaling, the resulting storms intensify more slowly and achieve lower peak intensities. At a given horizontal resolution, using RAVE increases peak storm intensity and reduces the time needed for tropical cyclogenesis—effects here suggested to be caused at least in part by the environmental moistening produced by RAVE. Consequently, the RAVE rescaling has the potential to improve simulations of tropical cyclones and other aggregated convection in models with horizontal resolutions of order 10–100 km.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3