Mechanisms of Poleward Propagating, Intraseasonal Convective Anomalies in Cloud System–Resolving Models

Author:

Boos William R.1,Kuang Zhiming2

Affiliation:

1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

2. Department of Earth and Planetary Sciences, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Abstract

Abstract An envelope of convection that propagates both poleward and eastward accounts for the largest fraction of intraseasonal variance of the tropical atmosphere during boreal summer. Here the mechanisms of poleward propagating convective anomalies are examined in a nonhydrostatic model with zonally symmetric boundary conditions, integrated on a beta plane at resolutions high enough to explicitly represent moist convection. When the domain has a narrow zonal dimension of 100 km or less, the model produces a quasisteady intertropical convergence zone (ITCZ). Meridionally propagating transients are produced for some prescribed sea surface temperature distributions, but these transients are shallow, vanish at finer resolutions, and have a structure that bears little resemblance to that of observed poleward propagating anomalies. This is in sharp contrast to previous studies that obtained robust poleward propagating anomalies in axisymmetric models using parameterized moist convection, and it suggests that the anomalies seen in those models may be caused by deficient representations of dynamics or subgrid-scale physics. Robust poleward propagating anomalies are obtained when the high-resolution, nonhydrostatic model is integrated in a wider domain with a zonal dimension near 1000 km. Diagnostics suggest that poleward propagation in this wide domain results from the convectively coupled beta drift of low-level vorticity anomalies. Deep near-equatorial ascent produces low-level cyclones that migrate poleward through the process of beta drift; Ekman pumping in these drifting cyclones then humidifies the free troposphere ahead of the initial deep ascent, shifting the convection poleward. The moist static energy budget and model sensitivity tests suggest that these anomalies can be viewed as moisture modes destabilized through a moisture–radiation feedback. Wind–evaporation feedback also seems to contribute to the instability of these anomalies, but because it enhances surface fluxes on the equatorward side of the anomalies, it also reduces their propagation speed. These results suggest a novel mechanism for the poleward propagation of intraseasonal convective anomalies and illustrate the need to evaluate theoretical models that use parameterized convection against cloud system–resolving models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3