Climate-invariant machine learning

Author:

Beucler Tom12ORCID,Gentine Pierre3ORCID,Yuval Janni4ORCID,Gupta Ankitesh2ORCID,Peng Liran2,Lin Jerry2ORCID,Yu Sungduk2ORCID,Rasp Stephan5,Ahmed Fiaz6,O’Gorman Paul A.4ORCID,Neelin J. David6ORCID,Lutsko Nicholas J.7ORCID,Pritchard Michael28ORCID

Affiliation:

1. Faculty of Geosciences and Environment, University of Lausanne, Lausanne, VD 1015, Switzerland.

2. Department of Earth System Science, University of California, Irvine, CA 92697, USA.

3. Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA.

4. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

5. Google Research, Mountain View, CA 94043, USA.

6. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA.

7. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA.

8. NVIDIA, Santa Clara, CA 95050, USA.

Abstract

Projecting climate change is a generalization problem: We extrapolate the recent past using physical models across past, present, and future climates. Current climate models require representations of processes that occur at scales smaller than model grid size, which have been the main source of model projection uncertainty. Recent machine learning (ML) algorithms hold promise to improve such process representations but tend to extrapolate poorly to climate regimes that they were not trained on. To get the best of the physical and statistical worlds, we propose a framework, termed “climate-invariant” ML, incorporating knowledge of climate processes into ML algorithms, and show that it can maintain high offline accuracy across a wide range of climate conditions and configurations in three distinct atmospheric models. Our results suggest that explicitly incorporating physical knowledge into data-driven models of Earth system processes can improve their consistency, data efficiency, and generalizability across climate regimes.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3