Author:
Bakhshaii Atoossa,Stull Roland
Abstract
AbstractTwo noniterative approximations are presented for saturated pseudoadiabats (also known as moist adiabats). One approximation determines which moist adiabat passes through a point of known pressure and temperature, such as through the lifting condensation level on a skew T or tephigram. The other approximation determines the air temperature at any pressure along a known moist adiabat, such as the final temperature of a rising cloudy air parcel. The method used to create these statistical regressions is a relatively new variant of genetic programming called gene-expression programming. The correlation coefficient between the resulting noniterative approximations and the iterated data such as plotted on thermodynamic diagrams is over 99.97%. The mean absolute error is 0.28°C, and the root mean square error is 0.44 within a thermodynamic domain bounded by −30° < θw ≤ 40°C, P > 20 kPa, and −60° ≤ T ≤ 40°C, where θw, P, and T are wet-bulb potential temperature, pressure, and air temperature.
Publisher
American Meteorological Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献