Affiliation:
1. Department of Meteorology, Naval Postgraduate School, Monterey, CA
2. Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN
Abstract
AbstractCommon assumptions in temperature lapse rate formulas for lifted air parcels include neglecting mixing, hydrostatic balance, the removal of all condensate once it forms (pseudoadiabatic), and/or the retention of all condensate within the parcel (adiabatic). These formulas are commonly derived from the conservation of entropy, which leads to errors when non-equilibrium mixed-phase condensate is present. To evaluate these assumptions, a new general lapse rate formula is derived from an expression for energy conservation, rather than entropy conservation. This new formula incorporates mixing of the parcel with its surroundings, relaxes the hydrostatic assumption, allows for non-equilibrium mixed-phase condensate, and can be formulated for pseudoadiabatic or adiabatic ascent. The new formula is shown to exactly conserve entropy for reversible ascent. Predictions by the new formula are compared to that of older and less general formulas. The errors in previous formulas arise from the assumption of hydrostatic balance, which results in considerable warm biases due to the neglect of the energy sink from buoyancy. Predictions of ascent with entrainment using the new formula are then compared to parcel properties along trajectories in large eddy simulations. Simulated parcel properties are better predicted by the formula using a diluted analogy to adiabatic ascent, wherein condensate is diluted at the same rate as other parcel properties, than by the diluted analogy to pseudoadiabatic ascent, wherein all condensate is removed. These results suggest that CAPE should be computed with adiabatic, rather than pseudoadiabatic, parcel ascent.
Publisher
American Meteorological Society
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献