Deterministic Ensemble Forecasts Using Gene-Expression Programming*

Author:

Bakhshaii Atoossa1,Stull Roland1

Affiliation:

1. University of British Columbia, Vancouver, British Columbia, Canada

Abstract

Abstract A method called gene-expression programming (GEP), which uses symbolic regression to form a nonlinear combination of ensemble NWP forecasts, is introduced. From a population of competing and evolving algorithms (each of which can create a different combination of NWP ensemble members), GEP uses computational natural selection to find the algorithm that maximizes a weather verification fitness function. The resulting best algorithm yields a deterministic ensemble forecast (DEF) that could serve as an alternative to the traditional ensemble average. Motivated by the difficulty in forecasting montane precipitation, the ability of GEP to produce bias-corrected short-range 24-h-accumulated precipitation DEFs is tested at 24 weather stations in mountainous southwestern Canada. As input to GEP are 11 limited-area ensemble members from three different NWP models at four horizontal grid spacings. The data consist of 198 quality controlled observation–forecast date pairs during the two fall–spring rainy seasons of October 2003–March 2005. Comparing the verification scores of GEP DEF versus an equally weighted ensemble-average DEF, the GEP DEFs were found to be better for about half of the mountain weather stations tested, while ensemble-average DEFs were better for the remaining stations. Regarding the multimodel multigrid-size “ensemble space” spanned by the ensemble members, a sparse sampling of this space with several carefully chosen ensemble members is found to create a DEF that is almost as good as a DEF using the full 11-member ensemble. The best GEP algorithms are nonunique and irreproducible, yet give consistent results that can be used to good advantage at selected weather stations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3