Estimation of Wind-Induced Losses from a Precipitation Gauge Network in the Australian Snowy Mountains

Author:

Chubb Thomas1,Manton Michael J.1,Siems Steven T.2,Peace Andrew D.3,Bilish Shane P.3

Affiliation:

1. School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

2. School of Earth, Atmosphere and Environment, and ARC Centre of Excellence for Climate System Science, Monash University, Clayton, Victoria, Australia

3. Snowy Hydro Ltd., Cooma, New South Wales, Australia

Abstract

Abstract Wind-induced losses, or undercatch, can have a substantial impact on precipitation gauge observations, especially in alpine environments that receive a substantial amount of frozen precipitation and may be exposed to high winds. A network of NOAH II all-weather gauges installed in the Snowy Mountains since 2006 provides an opportunity to evaluate the magnitude of undercatch in an Australian alpine environment. Data from two intercomparison sites were used with NOAH II gauges with different configurations of wind fences installed: unfenced, WMO standard double fence intercomparison reference (full DFIR) fences, and an experimental half-sized double fence (half DFIR). It was found that average ambient temperature over 6-h periods was sufficient to classify the precipitation phase as snow, mixed precipitation, or rain in a statistically robust way. Empirical catch ratio relationships (i.e., the quotient of observations from two gauges), based on wind speed, ambient temperature, and measured precipitation amount, were established for snow and mixed precipitation. An adjustment scheme to correct the unfenced NOAH II gauge data using the catch ratio relationships was cross validated with independent data from two additional sites, as well as from the intercomparison sites themselves. The adjustment scheme was applied to the observed precipitation amounts at the other sites with unfenced NOAH II gauges. In the worst-case scenario, it was found that the observed precipitation amount would need to be increased by 52% to match what would have been recorded had adequate shielding been installed. However, gauges that were naturally well protected, and those below about 1400 m, required very little adjustment. Spatial analysis showed that the average seasonal undercatch was between 6% and 15% for gauges above 1000 m MSL.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3