Microphysical mechanisms of wintertime postfrontal precipitation enhancement over the Australian Snowy Mountains

Author:

Gevorgyan Artur12ORCID,Siems Steven1,Huang Yi34,Ackermann Luis5,Manton Michael1

Affiliation:

1. School of Earth, Atmosphere and Environment Monash University Melbourne Victoria Australia

2. Hydrometeorology and Monitoring Center Yerevan Armenia

3. The University of Melbourne Melbourne Victoria Australia

4. Australian Research Council (ARC) Centre of Excellence for Climate Extremes Melbourne Australia

5. Observations and Data Science Section, Bureau of Meteorology Melbourne Australia

Abstract

AbstractA heavy orographic precipitation event associated with the postfrontal sector of a midlatitude cyclone over the Australian Snowy Mountains (ASM) was analyzed using field observations and numerical simulations. This event, observed during a 2018 intensive field campaign, was of particular interest as three distinct precipitation episodes were identified within a prolonged postfrontal period. Deep mixed‐phase clouds (MPCs) characterized by cold cloud‐top temperatures (colder than −30°C) and the presence of updrafts extending 3.5–4.5 km above the boundary‐layer height, produced the three enhanced precipitation events over the windward slopes of the ASM. The presence of conditional instabilities and deep updrafts were also found in the sounding and Doppler velocity observations respectively, while the cloud radar observations show the deep MPCs with cloud tops reaching to 6–7 km a.s.l. Orographic convection invigoration was found to be the main mechanism producing the precipitation enhancement over the windward slopes and higher terrain. Using the Weather Research/Forecasting model, we analyzed the rates of microphysical processes to explicitly account for the enhancement of precipitation formation processes in these MPCs. This analysis showed that the precipitation formation processes were further enhanced through depositional and riming growth of ice‐phase hydrometeors during the three precipitation events. Deposition is simulated at higher levels (above the −15°C level) and most likely enabled by deep convective updrafts through the midtroposphere, whereas riming is stronger at lower levels (below −10°C level) due to the persistent production of feeder supercooled liquid water clouds sustained by the orographic lifting.

Publisher

Wiley

Subject

Atmospheric Science

Reference67 articles.

1. Wintertime precipitation over the Australian Snowy Mountains: observations from an intensive Field campaign 2018;Ackermann L.;Journal of Hydrometeorology,2021

2. In situ observations of wintertime low‐altitude clouds over the Southern Ocean

3. The formation of atmospheric ice crystals by the freezing of droplets

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3