A Temporal Gauge Quality Control Algorithm as a Method for Identifying Potential Instrumentation Malfunctions

Author:

Martinaitis Steven M.12,Lincoln Scott3,Schlotzhauer David4,Cocks Stephen B.12,Zhang Jian2

Affiliation:

1. a Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

2. b NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. c National Weather Service Forecast Office, Chicago, Illinois

4. d National Weather Service/Lower Mississippi River Forecast Center, Slidell, Louisiana

Abstract

Abstract There are multiple reasons as to why a precipitation gauge would report erroneous observations. Systematic errors relating to the measuring apparatus or resulting from observational limitations due to environmental factors (e.g., wind-induced undercatch or wetting losses) can be quantified and potentially corrected within a gauge dataset. Other challenges can arise from instrumentation malfunctions, such as clogging, poor siting, and software issues. Instrumentation malfunctions are challenging to quantify as most gauge quality control (QC) schemes focus on the current observation and not on whether the gauge has an inherent issue that would likely require maintenance of the gauge. This study focuses on the development of a temporal QC scheme to identify the likelihood of an instrumentation malfunction through the examination of hourly gauge observations and associated QC designations. The analyzed gauge performance resulted in a temporal QC classification using one of three categories: GOOD, SUSP, and BAD. The temporal QC scheme also accounts for and provides an additional designation when a significant percentage of gauge observations and associated hourly QC were influenced by meteorological factors (e.g., the inability to properly measure winter precipitation). Findings showed a consistent percentage of gauges that were classified as BAD through the running 7-day (2.9%) and 30-day (4.4%) analyses. Verification of select gauges demonstrated how the temporal QC algorithm captured different forms of instrumental-based systematic errors that influenced gauge observations. Results from this study can benefit the identification of degraded performance at gauge sites prior to scheduled routine maintenance. Significance Statement This study proposes a scheme that quality controls rain gauges based on its performance over a running history of hourly observational data and quality control flags to identify gauges that likely have an instrumentation malfunction. Findings from this study show the potential of identifying gauges that are impacted by issues such as clogging, software errors, and poor gauge siting. This study also highlights the challenges of distinguishing between erroneous gauge observations based on an instrumentation malfunction versus erroneous observations that were the result of an environmental factor that influence the gauge observation or its quality control classification, such as winter precipitation or virga.

Funder

NOAA Research

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference85 articles.

1. Hydrol. Res.;Allerup, P.,1980

2. Adv. Water Resour.;Avanzi, F.,2014

3. Adv. Sci. Res.;Båserud, L.,2020

4. Mon. Wea. Rev.;Benjamin, S. G.,2016

5. J. Atmos. Oceanic Technol.;Boudala, F. S.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3