On the Decline of Wintertime Precipitation in the Snowy Mountains of Southeastern Australia

Author:

Chubb Thomas H.1,Siems Steven T.1,Manton Michael J.1

Affiliation:

1. School of Mathematical Sciences, Monash University, Clayton, Australia

Abstract

Abstract Data from a precipitation gauge network in the Snowy Mountains of southeastern Australia have been analyzed to produce a new climatology of wintertime precipitation and airmass history for the region in the period 1990–2009. Precipitation amounts on the western slopes and in the high elevations (>1000 m) of the Snowy Mountains region have experienced a decline in precipitation in excess of the general decline in southeastern Australia. The contrast in the decline east and west of the ranges suggests that factors influencing orographic precipitation are of particular importance. A synoptic decomposition of precipitation events has been performed, which demonstrates that about 57% of the wintertime precipitation may be attributed to storms associated with “cutoff lows” (equatorward of 45°S). A further 40% was found to be due to “embedded lows,” with the remainder due to Australian east coast lows and several other sporadically occurring events. The declining trend in wintertime precipitation over the past two decades is most clearly seen in the intensity of precipitation due to cutoff lows and coincides with a decline in the number of systems associated with a cold frontal passage. Airmass history during precipitation events was represented by back trajectories calculated from ECMWF Interim Reanalysis data, and statistics of air parcel position were related to observations of precipitation intensity. This approach gives insight into sources of moisture during wintertime storms, identifying “moisture corridors,” which are typically important for transport of water vapor from remote sources to the Snowy Mountains region. The prevalence of these moisture corridors is associated with the southern annular mode, which corresponds to fluctuations in the strength of the westerly winds in southeastern Australia.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference28 articles.

1. Conceptual models of precipitation systems;Browning;Wea. Forecasting,1986

2. Interannual variability of Australian snowfall;Budin;Aust. Meteor. Mag.,1985

3. Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993;Dirmeyer;J. Geophys. Res.,1999

4. An overview of the HYSPLIT_4 modelling system for trajectories, deposition;Draxler;Aust. Meteor. Mag.,1998

5. Australian east coast cyclones. Part I: Synoptic overview and case study;Holland;Mon. Wea. Rev.,1987

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3