Intrinsic Predictability of the 20 May 2013 Tornadic Thunderstorm Event in Oklahoma at Storm Scales

Author:

Zhang Yunji1,Zhang Fuqing2,Stensrud David J.2,Meng Zhiyong3

Affiliation:

1. Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China, and Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

2. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

3. Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Abstract

Abstract Using a high-resolution convection-allowing numerical weather prediction model, this study seeks to explore the intrinsic predictability of the severe tornadic thunderstorm event on 20 May 2013 in Oklahoma from its preinitiation environment to initiation, upscale organization, and interaction with other convective storms. This is accomplished through ensemble forecasts perturbed with minute initial condition uncertainties that were beyond detection capabilities of any current observational platforms. It was found that these small perturbations, too small to modify the initial mesoscale environmental instability and moisture fields, will be propagated and evolved via turbulence within the PBL and rapidly amplified in moist convective processes through positive feedbacks associated with updrafts, phase transitions of water species, and cold pools, thus greatly affecting the appearance, organization, and development of thunderstorms. The forecast errors remain nearly unchanged even when the initial perturbations (errors) were reduced by as much as 90%, which strongly suggests an inherently limited predictability for this thunderstorm event for lead times as short as 3–6 h. Further scale decomposition reveals rapid error growth and saturation in meso-γ scales (regardless of the magnitude of initial errors) and subsequent upscale growth into meso-β scales.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3