Sensitivity of Intrinsic Error Growth to Large-Scale Uncertainty Structure in a Record-Breaking Summertime Rainfall Event

Author:

Zhang Yunji123ORCID

Affiliation:

1. a Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

2. b Alliance for Education, Science, Engineering, and Design with Africa, The Pennsylvania State University, University Park, Pennsylvania

3. c Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract It is recognized that the atmosphere’s predictability is intrinsically limited by unobservably small uncertainties that are beyond our capability to eliminate. However, there have been discussions in recent years on whether forecast error grows upscale (small-scale error grows faster and transfers to progressively larger scales) or up-amplitude (grows at all scales at the same time) when unobservably small-amplitude initial uncertainties are imposed at the large scales and limit the intrinsic predictability. This study uses large-scale small-amplitude initial uncertainties of two different structures—one idealized, univariate, and isotropic, the other realistic, multivariate, and flow dependent—to examine the error growth characteristics in the intrinsic predictability regime associated with a record-breaking rainfall event that happened on 19–20 July 2021 in China. Results indicate upscale error growth characteristics regardless of the structure of the initial uncertainties: the errors at smaller scales grow fastest first; as the forecasts continue, the wavelengths of the fastest error growth gradually shift toward larger scales with reduced error growth rates. Therefore, error growth from smaller to larger scales was more important than the growth directly at the large scales of the initial errors. These upscale error growth characteristics also depend on the perturbed and examined quantities: if the examined quantity is perturbed, then its errors grow upscale; if there is no initial uncertainty in the examined quantity, then its errors grow at all scales at the same time, although its smaller-scale errors still grow faster for the first several hours, suggesting the existence of the upscale error growth. Significance Statement This study compared the error growth characteristics associated with the atmosphere’s intrinsic predictability under two different structures of unobservably small-amplitude, large-scale initial uncertainties: one idealized, univariate, and isotropic, the other realistic, multivariate, and flow dependent. The characteristics of the errors growing upscale rather than up-amplitude regardless of the initial uncertainties’ structure are apparent. The large-scale errors do not grow if their initial amplitudes are much bigger than the small-scale errors. This study also examined how the error growth characteristics will change when the quantity that is used to describe the error growth is inconsistent with the quantity that contains uncertainty, suggesting the importance of including multivariate, covariant uncertainties of state variables in atmospheric predictability studies.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

1. Potential vorticity dynamics of forecast errors: A quantitative case study;Baumgart, M.,2018

2. Quantitative view on the processes governing the upscale error growth up to the planetary scale using a stochastic convection scheme;Baumgart, M.,2019

3. Theoretical aspects of upscale error growth on the mesoscales: Idealized numerical simulations;Bierdel, L.,2018

4. A compressible model for the simulation of moist mountain waves;Durran, D. R.,1983

5. Atmospheric predictability: Why butterflies are not of practical importance;Durran, D. R.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3