A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part II: Short-Range Ensemble Forecasts

Author:

Aksoy Altuğ1,Dowell David C.2,Snyder Chris2

Affiliation:

1. Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, and National Center for Atmospheric Research,* Boulder, Colorado

2. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract The quality of convective-scale ensemble forecasts, initialized from analysis ensembles obtained through the assimilation of radar observations using an ensemble Kalman filter (EnKF), is investigated for cases whose behaviors span supercellular, linear, and multicellular organization. This work is the companion to Part I, which focused on the quality of analyses during the 60-min analysis period. Here, the focus is on 30-min ensemble forecasts initialized at the end of that period. As in Part I, the Weather Research and Forecasting (WRF) model is employed as a simplified cloud model at 2-km horizontal grid spacing. Various observation-space and state-space verification metrics, computed both for ensemble means and individual ensemble members, are employed to assess the quality of ensemble forecasts comparatively across cases. While the cases exhibit noticeable differences in predictability, the forecast skill in each case, as measured by various metrics, decays on a time scale of tens of minutes. The ensemble spread also increases rapidly but significant outlier members or clustering among members are not encountered. Forecast quality is seen to be influenced to varying degrees by the respective initial soundings. While radar data assimilation is able to partially mitigate some of the negative effects in some situations, the supercell case, in particular, remains difficult to predict even after 60 min of data assimilation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3