Near-Ground Rotation in Simulated Supercells: On the Robustness of the Baroclinic Mechanism*

Author:

Dahl Johannes M. L.1

Affiliation:

1. Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, Texas

Abstract

Abstract This study addresses the robustness of the baroclinic mechanism that facilitates the onset of surface rotation in supercells by using two idealized simulations with different microphysics parameterizations and by considering previous results. In particular, the importance of ambient crosswise vorticity relative to baroclinically generated vorticity in the development of near-ground cyclonic vorticity is analyzed. The storms were simulated using the CM1 model in a kinematic base state characterized by a straight-line hodograph. A trajectory analysis spanning about 30 min was performed for a large number of parcels that contribute to near-surface vertical-vorticity maxima. The vorticity along these trajectories was decomposed into barotropic and nonbarotropic parts, where the barotropic vorticity represents the effects of the preexisting, substantially crosswise horizontal storm-relative vorticity. The nonbarotropic part represents the vorticity produced baroclinically within the storm. It was found that the imported barotropic vorticity attains a downward component near the surface, while the baroclinic vorticity points upward and dominates. This dominance of the baroclinic vorticity is independent of whether a single-moment or double-moment microphysics parameterization is used. A scaling argument is offered as explanation, predicting that the baroclinic vertical vorticity becomes increasingly dominant as downdraft strength increases.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3