Assessing the Comparative Effects of Storm-Relative Helicity Components within Right-Moving Supercell Environments

Author:

Goldacker Nicholas A.1ORCID,Parker Matthew D.1

Affiliation:

1. a Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Abstract

Abstract Supercell thunderstorms develop low-level rotation via tilting of environmental horizontal vorticity (ωh) by the updraft. This rotation induces dynamic lifting that can stretch near-surface vertical vorticity into a tornado. Low-level updraft rotation is generally thought to scale with 0–500 m storm-relative helicity (SRH): the combination of storm-relative flow, |SRF|, |ωh|, and cosϕ (where ϕ is the angle between SRF and ωh). It is unclear how much influence each component of SRH has in intensifying the low-level mesocyclone. This study surveys these three components using self-organizing maps (SOMs) to distill 15 906 proximity soundings for observed right-moving supercells. Statistical analyses reveal the component most highly correlated to SRH and to streamwise vorticity (ωs) in the observed profiles is |ωh|. Furthermore, |ωh| and |SRF| are themselves highly correlated due to their shared dependence on the hodograph length. The representative profiles produced by the SOMs were combined with a common thermodynamic profile to initialize quasi-realistic supercells in a cloud model. The simulations reveal that, across a range of real-world profiles, intense low-level mesocyclones are most closely linked to ωh and SRF, while the angle between them appears to be mostly inconsequential. Significance Statement About three-fourths of all tornadoes are produced by rotating thunderstorms (supercells). When the part of the storm near cloud base (approximately 1 km above the ground) rotates more strongly, the chance of a tornado dramatically increases. The goal of this study is to identify the simplest characteristic(s) of the environmental wind profile that can be used to forecast the likelihood of strong cloud-base rotation. This study concludes that the most important ingredients for storm rotation are the magnitudes of the horizontal vertical wind shear between the surface and 500 m and the storm inflow wind, irrespective of their relative directions. This finding may lead to improved operational identification of environments favoring tornado formation.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference71 articles.

1. A numerical simulation of cyclic mesocyclogenesis;Adlerman, E. J.,1999

2. Investigation of near-storm environments for tornado events and warnings;Anderson-Frey, A. K.,2016

3. Self-organizing maps for the investigation of tornadic near-storm environments;Anderson-Frey, A. K.,2017

4. An hourly assimilation–forecast cycle: The RUC;Benjamin, S. G.,2004

5. A North American hourly assimilation and model forecast cycle: The Rapid Refresh;Benjamin, S. G.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3