An Assessment of Low-Level Baroclinity and Vorticity within a Simulated Supercell

Author:

Beck Jeffrey1,Weiss Christopher2

Affiliation:

1. Centre National de Recherches Météorologiques, Météo-France, Toulouse, France

2. Atmospheric Science Group, Texas Tech University, Lubbock, Texas

Abstract

Abstract Idealized supercell modeling has provided a wealth of information regarding the evolution and dynamics within supercell thunderstorms. However, discrepancies in conceptual models exist, including uncertainty regarding the existence, placement, and forcing of low-level boundaries in these storms, as well as their importance in low-level vorticity development. This study offers analysis of the origins of low-level boundaries and vertical vorticity within the low-level mesocyclone of a simulated supercell. Low-level boundary location shares similarities with previous modeling studies; however, the development and evolution of these boundaries differ from previous conceptual models. The rear-flank gust front develops first, whereas the formation of a boundary extending north of the mesocyclone undergoes numerous iterations caused by competing outflow and inflow before a steady-state boundary is produced. A third boundary extending northeast of the mesocyclone is produced through evaporative cooling of inflow air and develops last. Conceptual models for the simulation were created to demonstrate the evolution and structure of the low-level boundaries. Only the rear-flank gust front may be classified as a “gust front,” defined as having a strong wind shift, delineation between inflow and outflow air, and a strong pressure gradient across the boundary. Trajectory analyses show that parcels traversing the boundary north of the mesocyclone and the rear-flank gust front play a strong role in the development of vertical vorticity existing within the low-level mesocyclone. In addition, baroclinity near the rear-flank downdraft proves to be key in producing horizontal vorticity that is eventually tilted, providing a majority of the positive vertical vorticity within the low-level mesocyclone.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

1. A numerical simulation of cyclic mesocyclogenesis;Adlerman;J. Atmos. Sci.,1999

2. The supercell spectrum. Part I: A review of research related to supercell precipitation morphology;Beatty;Electron. J. Severe Storms Meteor.,2008

3. High-resolution dual-Doppler analyses of the 29 May 2001 Kress, Texas, cyclic supercell;Beck;Mon. Wea. Rev.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3