Idealized Simulations of a Supercell Interacting with an Urban Area

Author:

Naylor Jason1ORCID,Berry Megan E.1,Gosney Emily G.1

Affiliation:

1. Department of Geographic and Environmental Sciences, University of Louisville, Louisville, KY 40292, USA

Abstract

Idealized simulations with a cloud-resolving model are conducted to examine the impact of a simplified city on the structure of a supercell thunderstorm. The simplified city is created by enhancing the surface roughness length and/or surface temperature relative to the surroundings. When the simplified city is both warmer and has larger surface roughness relative to its surroundings, the supercell that passes over it has a larger updraft helicity (at both midlevels and the surface) and enhanced precipitation and hail downwind of the city, all relative to the control simulation. The storm environment within the city has larger convective available potential energy which helps stimulate stronger low-level updrafts. Storm relative helicity (SRH) is actually reduced over the city, but enhanced in a narrow band on the northern edge of the city. This band of larger SRH is ingested by the primary updraft just prior to passing over the city, corresponding with enhancement to the near-surface mesocyclone. Additional simulations in which the simplified city is altered by removing either the heat island or surface roughness length gradient reveal that the presence of a heat island is most closely associated with enhancements in updraft helicity and low-level updrafts relative to the control simulation.

Funder

National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3